Definite Integration Question 72

Question: $ \int _{0}^{\pi /2}{\sin 2x\log \tan xdx} $ is equal to

[Kerala (Engg.) 2002; AI CBSE 1990; Karnataka CET 1996, 98]

Options:

A) $ \pi $

B) $ \pi /2 $

C) 0

D) $ 2\pi $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{\pi /2}{\sin 2x\log \tan xdx} $ , $ I=\int_0^{\pi /2}{\sin 2( \frac{\pi }{2}-x )\log \tan ( \frac{\pi }{2}-x )dx} $ , $ [\because \int_0^{a}{f(x)dx=\int_0^{a}{f(a-x)dx]}} $

$ =\int_0^{\pi /2}{\sin 2x\log \cot xdx} $

$ =-\int_0^{\pi /2}{\sin 2x\log \tan xdx} $

$ \therefore I=-I $

therefore 2I = 0
$ \Rightarrow I=0. $