Definite Integration Question 77

Question: The value of $ I=\int _{0}^{1}{x| x-\frac{1}{2} |dx} $ is

[UPSEAT 2003]

Options:

A) 1/3

B) 1/4

C) 1/8

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{1}{x| x-\frac{1}{2} |dx} $

$ =-\int_0^{1/2}{x( x-\frac{1}{2} )+\int _{1/2}^{1}{x( x-\frac{1}{2} )}dx} $

$ =\int_0^{1/2}{( \frac{1}{2}x-x^{2} )dx+\int _{1/2}^{1}{( x^{2}-\frac{1}{2}x )dx}} $

$ =( \frac{x^{2}}{4}-\frac{x^{3}}{3} )_0^{1/2}+( \frac{x^{3}}{3}-\frac{x^{2}}{4} ) _{1/2}^{1} $

$ =( \frac{1}{16}-\frac{1}{24} )+( \frac{1}{3}-\frac{1}{4}+\frac{1}{16}-\frac{1}{24} )=\frac{1}{8}. $