Definite Integration Question 8

Question: $ \int_0^{\pi /4}{[\sqrt{\tan x}+\sqrt{\cot x}]dx} $ equals

[RPET 1997]

Options:

A) $ \sqrt{2}\pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{\sqrt{2}} $

D) $ 2\pi $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{\pi /4}{[\sqrt{\tan x}+\sqrt{\cot x]}}dx=\int_0^{\pi /4}{\frac{\sin x+\cos x}{\sqrt{\sin x\cos x}}dx} $

$ =\sqrt{2}\int_0^{\pi /4}{\frac{\sin x+\cos x}{\sqrt{1-{{(\sin x-\cos x)}^{2}}}}dx} $

Put $ \sin x-\cos x=t $ ; $ (\cos x+\sin x)dx=dt $

$ \therefore I=\sqrt{2}\int _{-1}^{0}{\frac{dt}{\sqrt{1-t^{2}}}} $

$ I=\sqrt{2}[{{\sin }^{-1}}t] _{-1}^{0}=\sqrt{2}[0-(-\pi /2)]=\frac{\pi }{\sqrt{2}} $ .