Definite Integration Question 81

Question: $ \int_0^{\pi /4}{{}}(\cos x-\sin x)dx+\int _{\pi /4}^{5\pi /4}{{}}(\sin x-\cos x)dx $

$ +\int _{2\pi }^{\pi /4}{{}}(\cos x-\sin x)dx $ is equal to

[RPET 2000]

Options:

A) $ \sqrt{2}-2 $

B) $ 2\sqrt{2}-2 $

C) $ 3\sqrt{2}-2 $

D) $ 4\sqrt{2}-2 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{\pi /4}{(\cos x-\sin x)dx+\int _{\pi /4}^{5\pi /4}{(\sin x-\cos x)dx}} $

$ +\int _{2\pi }^{\pi /4}{(\cos x-\sin x)dx} $

$ =[\sin x+\cos x]_0^{\frac{\pi }{4}}-[\sin x+\cos x] _{\frac{\pi }{4}}^{\frac{5\pi }{4}}+[\sin x+\cos x] _{2\pi }^{\frac{\pi }{4}} $

$ I=[ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1 ]-[ -\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}-( \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} ) ]+[ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1 ] $

$ I=[\sqrt{2}-1]-[-\sqrt{2}-\sqrt{2}]+[\sqrt{2}-1] $

$ I=[\sqrt{2}-1+2\sqrt{2}+\sqrt{2}-1] $

$ =4\sqrt{2}-2 $ .