Definite Integration Question 92

Question: If $ \int_0^{\pi }{xf(\sin x)dx=A}\int_0^{\pi /2}{f(\sin x)dx} $ , then A is

[AIEEE 2004]

Options:

A) $ 2\pi $

B) $ \pi $

C) $ \frac{\pi }{4} $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_0^{\pi }{xf(\sin x)dx}=A\int_0^{\pi /2}{f(\sin x)dx} $

Now, $ 2I=\int_0^{\pi }{xf(\sin x)dx+\int_0^{\pi }{(\pi -x)f[\sin (\pi -x)]dx}} $

$ =\int_0^{\pi }{\pi f(\sin x)dx}=\pi \int_0^{\pi }{f(\sin x)dx} $

therefore $ 2I=2\pi \int_0^{\pi /2}{f(\sin x)dx} $

$ I=\pi \int_0^{\pi /2}{f(\sin x)dx} $

$ =A\int_0^{\pi }{f(\sin x)dx} $ .

Hence $ A=\pi $ .