Definite Integration Question 93

Question: For $ 0\le x\le \pi , $ the area bounded by $ y=x $ and $ y=x+\sin x, $ is

[Roorkee Qualifying 1998]

Options:

A) 2

B) 4

C) $ 2\pi $

D) $ 4\pi $

Show Answer

Answer:

Correct Answer: A

Solution:

The curves $ y=x $ and $ y=x $ intersect at (0, 0) and $ (\pi ,\pi ) $ .

Hence area bounded by the two curves $ =\int\limits_0^{\pi }{(x+\sin x)dx-\int\limits_0^{\pi }{xdx}=\int\limits_0^{\pi }{\sin xdx}} $

$ =[-\cos x]_0^{\pi }=-\cos \pi +\cos 0=-(-1)+(1)=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें