Definite Integration Question 94

Question: $ \int_0^{\pi /2}{\frac{\cos x}{(1+\sin x)(2+\sin x)}}dx= $

[UPSEAT 1999]

Options:

A) $ \log \frac{4}{3} $

B) $ \log \frac{1}{3} $

C) $ \log \frac{3}{4} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ \sin x=t\Rightarrow \cos xdx=dt, $ so that reduced integral is $ \int_0^{1}{( \frac{1}{1+t}-\frac{1}{2+t} )dt=[\log (1+t)-\log (2+t)]_0^{1}} $

$ =\log \frac{2}{3}-\log \frac{1}{2}=\log \frac{4}{3} $ .