Definite Integration Question 99

Question: Let $ a,b,c $ be non-zero real numbers such that $ \int_0^{3}{(3ax^{2}+2bx+c)dx}=\int_1^{3}{(3ax^{2}+2bx+c})dx, $ then

[BIT Ranchi 1991]

Options:

A) $ a+b+c=3 $

B) $ a+b+c=1 $

C) $ a+b+c=0 $

D) $ a+b+c=2 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{3}{(3ax^{2}+2bx+c)dx=\int_1^{3}{(3ax^{2}+2bx+c)dx}} $

therefore $ \int_0^{1}{(3ax^{2}+2bx+c)dx+\int_1^{3}{(3ax^{2}+2bx+c)dx}} $

$ =\int_1^{3}{(3ax^{2}+2bx+c)dx} $

therefore $ \int_0^{1}{(3ax^{2}+2bx+c)dx=0} $

therefore $ [ \frac{3ax^{3}}{3}+\frac{2bx^{2}}{2}+cx ]_0^{1}=0\Rightarrow a+b+c=0 $ .