Determinants Matrices Question 10

Question: If $ \begin{vmatrix} x^{2}+x & 3x-1 & -x+3 \\ 2x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3x \\ \end{vmatrix} $

$ =a_0+a_1x+a_2x^{2}+….+a_7x^{7}, $ then the value of $ a_0 $ is

Options:

A) $ 25 $

B) $ 24 $

C) $ 23 $

D) $ 21 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ \begin{bmatrix} x^{2}+x & 3x-1 & -x+3 \\ 2x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3x \\ \end{bmatrix} =a_0+a_1x+a_2x^{2} $

$ +………+a_7x^{7} $ Put $ x=0\Rightarrow \begin{vmatrix} 0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0 \\ \end{vmatrix}=a_0\Rightarrow a_0=21 $