Determinants Matrices Question 10
Question: If $ \begin{vmatrix} x^{2}+x & 3x-1 & -x+3 \\ 2x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3x \\ \end{vmatrix} $
$ =a_0+a_1x+a_2x^{2}+….+a_7x^{7}, $ then the value of $ a_0 $ is
Options:
A) $ 25 $
B) $ 24 $
C) $ 23 $
D) $ 21 $
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] $ \begin{bmatrix} x^{2}+x & 3x-1 & -x+3 \\ 2x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3x \\ \end{bmatrix} =a_0+a_1x+a_2x^{2} $
$ +………+a_7x^{7} $ Put $ x=0\Rightarrow \begin{vmatrix} 0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0 \\ \end{vmatrix}=a_0\Rightarrow a_0=21 $