Determinants Matrices Question 100

Question: If $ A={{[a _{ij}]} _{n\times n}} $ be a diagonal matrix with diagonal element all different and $ B={{[b _{ij}]} _{n\times n}} $ be some another matrix. Let $ AB={{[cij]} _{n\times n}} $ then $ c _{ij} $ is equal to

Options:

A) $ a _{jj}b _{ij} $

B) $ a _{ii}b _{ij} $

C) $ a _{ij}b _{ij} $

D) $ a _{ij}b _{ji} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ c _{ij}=\sum\limits _{k=1}^{n}{a _{ik}b _{kj}} $

(In general) and in a diagonal matrix non-diagonal elements are zero i.e., $ a _{ij}= \begin{matrix} 0 & ifi\ne j \\ a{ & _{ii}}, & ifi=j \\ \end{matrix} . $ So, $ c _{ij}=a _{ii}b _{ij} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें