Determinants Matrices Question 101

Question: If $ B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 4 & -3 \\ 2 & 0 & 5 \end{bmatrix} $, find the determinant of the adjoint of the adjoint of matrix B.

Options:

A) $ 14^4 $

B) $ 14^3 $

C) $ 14^2 $

D) $ 14^1 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let’s first calculate the adjoint of matrix B:

Calculate the cofactor matrix of B: $ B_{11} = \begin{vmatrix} 4 & -3 \\ 0 & 5 \end{vmatrix} = 20 $

$ B_{12} = -\begin{vmatrix} 1 & -3 \\ 2 & 5 \end{vmatrix} = -7 $

$ B_{13} = \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix} = -8 $

$ B_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 5 \end{vmatrix} = 5 $

$ B_{22} = \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} = 11 $

$ B_{23} = -\begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} = 6 $

$ B_{31} = \begin{vmatrix} -1 & 4 \\ 4 & -3 \end{vmatrix} = 13 $

$ B_{32} = -\begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix} = -11 $

$ B_{33} = \begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} = 13 $

Form the cofactor matrix: $ \text{adj}(B) = \begin{bmatrix} 20 & -7 & -8 \\ 5 & 11 & 6 \\ 13 & -11 & 13 \end{bmatrix} $

Now calculate the adjoint of the adjoint of B: $ \text{adj}(\text{adj}(B)) = |B|^2 \cdot B = 14^2 \cdot B = \begin{bmatrix} 196 & 0 & 0 \\ 0 & 196 & 0 \\ 0 & 0 & 196 \end{bmatrix} $



sathee Ask SATHEE