Determinants Matrices Question 101

Question: If $ B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 4 & -3 \\ 2 & 0 & 5 \end{bmatrix} $, find the determinant of the adjoint of the adjoint of matrix B.

Options:

A) $ 14^4 $

B) $ 14^3 $

C) $ 14^2 $

D) $ 14^1 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let’s first calculate the adjoint of matrix B:

Calculate the cofactor matrix of B: $ B_{11} = \begin{vmatrix} 4 & -3 \\ 0 & 5 \end{vmatrix} = 20 $

$ B_{12} = -\begin{vmatrix} 1 & -3 \\ 2 & 5 \end{vmatrix} = -7 $

$ B_{13} = \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix} = -8 $

$ B_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 5 \end{vmatrix} = 5 $

$ B_{22} = \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} = 11 $

$ B_{23} = -\begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} = 6 $

$ B_{31} = \begin{vmatrix} -1 & 4 \\ 4 & -3 \end{vmatrix} = 13 $

$ B_{32} = -\begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix} = -11 $

$ B_{33} = \begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} = 13 $

Form the cofactor matrix: $ \text{adj}(B) = \begin{bmatrix} 20 & -7 & -8 \\ 5 & 11 & 6 \\ 13 & -11 & 13 \end{bmatrix} $

Now calculate the adjoint of the adjoint of B: $ \text{adj}(\text{adj}(B)) = |B|^2 \cdot B = 14^2 \cdot B = \begin{bmatrix} 196 & 0 & 0 \\ 0 & 196 & 0 \\ 0 & 0 & 196 \end{bmatrix} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें