Determinants Matrices Question 104

Question: The matrix $ A= \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} $ is

Options:

A) Idempotent matrix

B) Involutory matrix

C) Nilpotent matrix

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ A^{2}= \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} $

$ = \begin{bmatrix} 25-24+0 & 40-40+0 & 0+0+0 \\ -15+15+0 & -24+25+0 & 0+0+0 \\ -5+6-1 & -8+10-2 & 0+0+1 \\ \end{bmatrix} $

$ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} =I $ Hence, the matrix A is involutory.