Determinants Matrices Question 107

Question: If $ A= \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix} $ and $ A^{2}= \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \\ \end{bmatrix} $ , then

Options:

A) $ \alpha =2ab,\beta =a^{2}+b^{2} $

B) $ \alpha =a^{2}+b^{2},\beta =ab $

C) $ \alpha =a^{2}+b^{2},\beta =2ab $

D) $ \alpha =a^{2}+b^{2},\beta =a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ A^{2}= \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \\ \end{bmatrix} = \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix} \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix} $

$ = \begin{bmatrix} a^{2}+b^{2} & 2ab \\ 2ab & a^{2}+b^{2} \\ \end{bmatrix} ;a={{\alpha }^{2}}+b^{2};\beta =2ab $