Determinants Matrices Question 115

Question: If $ A^{k}=0 $ (A is nilpotent with index k), $ {{(I-A)}^{p}}=I+A+A^{2}+….+{A^{k-1}}, $ thus p is,

Options:

A) -1

B) -2

C) ½

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let $ B=I+A+A^{2}+….+{A^{k-1}} $

Now multiply both sides by (I - A), we get $ B(I-A)=(I+A+A^{2}+….+{A^{k-1}}(I-A) $

$ =I-A+A-A^{2}+A^{2}-A^{3}+….-{A^{k-1}}+{A^{k-1}}-A^{k} $

$ =I-A^{k}=I, $ since $ A^{k}=0\Rightarrow B={{(I-A)}^{-1}} $ Hence $ {{(I-A)}^{-1}}=I+A+A^{2}+…+{A^{k-1}} $ Thus $ p=-1 $