Determinants Matrices Question 117

Question: Let A and B be $ 3\times 3 $ matrices of real numbers, where A is symmetric, B is skew symmetric, and $ (A+B)(A-B)=(A-B)(A+B). $ If $ {{(AB)}^{t}}={{(-1)}^{k}}AB $ where $ {{(AB)}^{t}} $ is the transpose of the matrix AB, then k is

Options:

A) Any integer

B) Odd integer

C) Even integer

D) Cannot say anything

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ (A+B)(A-B)=(A-B)(A+B) $
    $ \Rightarrow AB=BA $ as A us symmetric and B is skew-symmetric $ {{(AB)}^{t}}=-AB $
    $ \Rightarrow k $ is an odd integer.