Determinants Matrices Question 118

Question: If A is a square matrix, then $ AA^{T} $ is a

Options:

A) Skew-symmetric matrix

B) Symmetric matrix

C) Diagonal matrix

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let $ A= \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 2 \\ \end{bmatrix} , $ then $ A’= \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \\ \end{bmatrix} $
    $ \therefore AA’= \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 2 \\ \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \\ \end{bmatrix} = \begin{bmatrix} 3 & 1 & 4 \\ 1 & 5 & 1 \\ 4 & 1 & 4 \\ \end{bmatrix} $