Determinants Matrices Question 119

Question: Suppose the system of equations $ a_1x+b_1y+c_1z=d_1 $

$ a_2x+b_2y+c_2z=d_2 $

$ a_3x+b_3y+c_3z=d_3 $ has a unique solution $ (x_0,y_0,z_0) $ . If $ x_0=0, $ then which one of the following is correct-

Options:

A) $ \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ \end{vmatrix}=0 $

B) $ \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \\ \end{vmatrix}=0 $

C) $ \begin{vmatrix} d_1 & a_1 & c_1 \\ d_2 & a_2 & c_2 \\ d_3 & a_3 & c_3 \\ \end{vmatrix}=0 $

D) $ \begin{vmatrix} d_1 & a_1 & b_1 \\ d_2 & a_2 & b_2 \\ d_3 & a_3 & b_3 \\ \end{vmatrix}=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] The given system of equations is $ a_1x+b_1y+c_1z=d_1 $

$ a_2x+b_2y+c_2z=d_2 $ and $ a_3x+b_3y+c_3z=d_3 $ Let $ \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ \end{vmatrix} $ This system has a unique solution $ x_0,y_0,z_0 $ If $ \Delta \ne 0 $ and $ x_0=\frac{\Delta x}{\Delta }=0\Rightarrow \Delta x=0 $
$ \Rightarrow \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \\ \end{vmatrix}=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें