Determinants Matrices Question 12
Question: Let $ \lambda $ and $ \alpha $ be real. The set of all values of x for which the system of linear equations $ \lambda x+(\sin \alpha )y+(cos\alpha )z=0 $ $ x+(cos\alpha )y+(sin\alpha )z=0 $ $ -x+(\sin \alpha )-(\cos \alpha )z=0 $ has a non-trivial solution, is
Options:
A) $ [ 0,\sqrt{2} ] $
B) $ [ -\sqrt{2},0 ] $
C) $ [ -\sqrt{2},\sqrt{2} ] $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] Since the system has a non-trivial solution, therefore   $  \begin{vmatrix}    \lambda  & \sin \alpha  & \cos \alpha   \\    1 & \cos \alpha  & \sin \alpha   \\    -1 & \sin \alpha  & -\cos \alpha   \\ \end{vmatrix}=0 $   
 $ \Rightarrow \lambda (-{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha ) $
$ -(-\sin \alpha \cos \alpha -\sin \alpha \cos \alpha ) $
$ -({{\sin }^{2}}\alpha -{{\cos }^{2}}\alpha )=0 $   
$ \Rightarrow -\lambda +\sin 2\alpha +\cos 2\alpha =0 $   
$ \Rightarrow \lambda =\sin 2\alpha +\cos 2\alpha  $   
$ \Rightarrow \lambda =\sqrt{2}\cos ( 2\alpha -\frac{\pi }{4} ). $    Since   $ -1\le \cos ( 2\alpha -\frac{\pi }{4} )\le 1\forall \in R $   
$ \therefore -\sqrt{2}\le \lambda \le \sqrt{2} $    i.e.   $ \lambda \in [ -\sqrt{2},\sqrt{2} ] $
 BETA
  BETA 
             
             
           
           
           
          