Determinants Matrices Question 125

Question: If matrix $ A= \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} $ then find $ tr(A)+tr(A^{2})+tr(A^{3})+…+tr(A^{100}) $

Options:

A) 100

B) 50

C) 200

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Consider $ A^{2}= \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} $

$ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} =ISoA^{3}= \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \\ \end{bmatrix} $ and So on $ tr(A)+tr(A^{2})tr(A^{3})+…+tr(A^{100}) $

$ =(-1)+(3)+(-1)+(3)+…+(-1)+(3)=200 $