Determinants Matrices Question 127

Question: Let $ A=( \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \\ \end{matrix} ). $ and 10 $ B=( \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \\ \end{matrix} ). $ If B is the inverse of matrix A, then $ \alpha $ is

Options:

A) 5

B) -1

C) 2

D) -2

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Here,
    $ \Rightarrow B=\frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \\ \end{bmatrix} $ Also since, $ B={A^{-1}}\Rightarrow AB=I $
    $ \Rightarrow \frac{1}{10} \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \\ \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $
    $ \Rightarrow \frac{1}{10} \begin{bmatrix} 10 & 0 & 5-2 \\ 0 & 10 & -5+\alpha \\ 0 & 0 & 5+\alpha \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $
    $ \Rightarrow \frac{5-\alpha }{10}=0\Rightarrow \alpha =5 $