Determinants Matrices Question 128

Question: If A and B are two matrices such that AB = B and BA = A, then $ A^{2}+B^{2} $ is equal to

Options:

A) 2AB

B) 2BA

C) A+B

D) AB

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] We have, $ A^{2}+B^{2}=AA+BB $

$ =A(BA)+B(AB) $

$ (\therefore AB=BandBA+A) $

$ =(AB)A+(BA)B $

$ =BA+AB=A+B(\therefore AB=BandBA=A) $