Determinants Matrices Question 130

Question: For the equation , $ \begin{vmatrix} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \\ \end{vmatrix} $= 0

Options:

A) There are exactly two distinct roots

B) There is one pair of equation real roots

C) There are three pairs of equal roots

D) Modulus of each root is 2

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \Delta =(1+x+x^{2}) \begin{vmatrix} 1 & 1 & 1 \\ x^{2} & 1 & x \\ x & x^{3} & 1 \\ \end{vmatrix}=(1+x+x^{2}){{(x-1)}^{2}} $ Therefore, $ \Delta =0 $ has roots 1, 1, $ {{\omega }^{{}}} $ , $ {{\omega }^{{}}} $ , $ {{\omega }^{2}} $ , $ {{\omega }^{2}} $ .