Determinants Matrices Question 130

Question: For the equation , $ \begin{vmatrix} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \\ \end{vmatrix} $= 0

Options:

A) There are exactly two distinct roots

B) There is one pair of real roots for the equation

C) There are three pairs of equal roots

D) Modulus of each root is 2

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \Delta =(1+x+x^{2}) \begin{vmatrix} 1 & 1 & 1 \\ x^{2} & 1 & x \\ x & x^{3} & 1 \\ \end{vmatrix}=(1+x+x^{2}){{(x-1)}^{2}} $ Therefore, $ \Delta =0 $ has roots 1, 1, $ {{\omega }^{3}} $ , $ {{\omega }^{3}} $ , $ {{\omega }^{2}} $ , $ {{\omega }^{2}} $ .


Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index