Determinants Matrices Question 133

Question: Let $ A+2B= \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \\ \end{bmatrix} $ and $ 2A-B= \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \\ \end{bmatrix} $ , then $\operatorname{tr}(A) - \operatorname{tr}(B)$ is

Options:

A) 1

B) 3

C) 2

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Here to find the value of $ tr(A)-tr(B), $ we need not to find the matrices A and B. We can find tr(A)-tr[b] using the properties of trace of matrix, i.e., $ A+2B= \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \\ \end{bmatrix} \Rightarrow tr(A+2B)=-1(1) $ Or $ tr(A)+2tr(B)=-1 $
    $ \Rightarrow 2A-B= \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \\ \end{bmatrix} $
    $ \Rightarrow tr(2A-B)=3 $ or $ 2tr(A)-tr(B)=3(2) $ Solving (1) and (2), we get tr[a] = 1 and tr[b] = -1
    $ \Rightarrow tr(A)-tr(B)=2 $