Determinants Matrices Question 136

Question: If the least number of zeroes in a lower triangular matrix is 10, then what is the order of the matrix-

Options:

A) $ 3\times 3 $

B) $ 4\times 4 $

C) $ 5\times 5 $

D) $ 10\times 10 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Number of zeroes in a lower triangular matrix of order $ n\times n $ is $ 1+2+3+….+n=\frac{n(n+1)}{2} $ Number of zeroes = 10
    $ \Rightarrow \frac{n(n+1)}{2}=10 $
    $ \Rightarrow n^{2}+n=20=0 $
    $ \Rightarrow (n+5)(n-4)=0 $
    $ \Rightarrow n=4 $ or $ -5 $ (-5 is meaningless)
    $ \Rightarrow n=4.\Rightarrow $ order of the matrix is $ 4\times 4 $