Determinants Matrices Question 138
Question: If a matrix A is such that $ 3A^{3}+2A^{2}+5A+I=0, $ then what is $ {A^{-1}} $ equal to-
Options:
A) $ -(3A^{2}+2A+5I) $
B) $ 3A^{2}+2A+5I $
C) $ 3A^{2}-2A-5I $
D) $ (3A^{2}+2A-5I) $
Show Answer
Answer:
Correct Answer: A
Solution:
- [a] Let A be a matrix such that   $ 3A^{3}+2A^{2}+5A+I=0 $    Post multiply by   $ {A^{-1}} $    on both the sides, we get   $ 3A^{3}{A^{-1}}+2A^{2}{A^{-1}}+5A{A^{-1}}+I{A^{-1}}=0 $   
 $ \Rightarrow 3A^{2}+2A+5I+{A^{-1}}=0 $
 $ \Rightarrow {A^{-1}}=-(3A^{2}+2A+5I) $
 BETA
  BETA 
             
             
           
           
           
          