Determinants Matrices Question 140

Question: If $ A= \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ \end{bmatrix} $ , I is the unit matrix of order 2 and a, b are arbitrary constants, then $ {{(aI+bA)}^{2}} $ is equal to

Options:

A) $ a^{2}I+abA $

B) $ a^{2}I+2abA $

C) $ a^{2}I+b^{2}A $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ {{(aI+bA)}^{2}}=a^{2}I^{2}+b^{2}A^{2}+2abAI $

$ =a^{2}I^{2}+b^{2}A^{2}+2abA $ But $ A^{2}= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \therefore {{(aI+bA)}^{2}}=a^{2}I+2abA $ .