Determinants Matrices Question 146

Question: The number of solutions of the matrix equation $ X^{2}= \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ \end{bmatrix} $ is

Options:

A) more than 2

B) 2

C) 0

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let $ X=( \begin{matrix} a & b \\ c & d \\ \end{matrix} ) $
    $ \Rightarrow X^{2}=( \begin{matrix} a^{2}+bc & ab+bd \\ ac+cd & bc+d^{2} \\ \end{matrix} ) $
    $ \Rightarrow a^{2}+bc=1 $ and $ ab+bd=1 $
    $ \Rightarrow b(a+d)=1 $

$ ac+cd=2\Rightarrow c(a+d)=2\Rightarrow 2b=c $ Also. $ bc+d^{2}=3\Rightarrow d^{2}-a^{2}=2 $
$ \Rightarrow (d-a)(a+d)=2\Rightarrow d-a=2b $ (Using $ bc=1-a^{2} $ )
$ \Rightarrow 2d=2b+1/b, $

$ 2a=1/b-2b $

$ d=b+1/2b, $

$ a=1/(2b)-b $

$ c=2b $
$ \Rightarrow ( b^{2}+\frac{1}{4b^{2}}+1 )+2b^{2}=3 $
$ \Rightarrow 3b^{2}+\frac{1}{4b^{2}}=2 $
$ \Rightarrow 3x+\frac{1}{4x}=2 $ Or $ b=\pm \frac{1}{\sqrt{6}} $ or $ b=\pm \frac{1}{\sqrt{2}} $ Therefore, matrices are $ ( \begin{matrix} 0 & 1/\sqrt{2} \\ \sqrt{2} & \sqrt{2} \\ \end{matrix} ),( \begin{matrix} 0 & -1\sqrt{2} \\ -\sqrt{2} & -\sqrt{2} \\ \end{matrix} ),( \begin{matrix} 2\sqrt{6} & -1/\sqrt{6} \\ 2/\sqrt{6} & 4\sqrt{6} \\ \end{matrix} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें