Determinants Matrices Question 147

Question: Let A, B, C, D be (not necessarily square) real matrices such that $ A^{T}=BCD;B^{T}=CDA; $

$ C^{T}=DAB $ and $ D^{T}=ABC $ for the matrix $ S=ABCD,S^{3}= $

Options:

A) I

B) $ S^{2} $

C) S

D) O

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ S=ABCD=A(BCD)=AA^{T}…(1) $

$ S^{3}=(ABCD)(ABCD)(ABCD) $

$ =(ABC)(DAB)(CDA)(BCD) $

$ =D^{T}C^{T}B^{T}A^{T} $

$ ={{(BCD)}^{T}}A^{T}=AA^{T}…(2) $ From (1) and (2), $ S=S^{3} $