Determinants Matrices Question 148

Question: If $ a>0,b>0,c>0 $ are respectively the pth, qth,rth terms of GP, then the value of the determinant $ \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \\ \end{vmatrix} $ is

Options:

A) $ 0 $

B) $ 1 $

C) $ -1 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let A be the 1st term and R the common ration of G.P., then; $ a=T _{p}=A{R^{p-1}}\therefore \log a=\log A+(p-1)logR $ Similarly, $ \log b=\log A+(q-1)logR $ and $ \log c=logA+(r-1)logR $
    $ \therefore \Delta = \begin{vmatrix} & \log A+(p-1)logRp1 \\ & logA+(q-1)logRq1 \\ & \log A+(r-1)logRr1 \\ \end{vmatrix} $ Split into two determinants and in the first take log A common and in the second take log R common $ \Delta =\log A \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \\ \end{vmatrix}+\log R \begin{vmatrix} p-1 & p & 1 \\ q-1 & q & 1 \\ r-1 & r & 1 \\ \end{vmatrix} $ Apply $ C_1\to C_1-C_2+C_3 $ in the second $ \Delta =0+\log R \begin{vmatrix} 0 & p & 1 \\ 0 & q & 1 \\ 0 & r & 1 \\ \end{vmatrix}=0 $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें