Determinants Matrices Question 151

Question: If Z is an idempotent matrix, then $ {{(I+Z)}^{n}} $

Options:

A) $ I+2^{n}Z $

B) $ I+(2^{n}-1)Z $

C) $ I-(2^{n}-1)Z $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Z is idempotent then $ Z^{2}=Z\Rightarrow Z^{3},Z^{4},…,Z^{n}=Z $

$ {{(I+Z)}^{n}}={{}^{n}}C_0I^{n}+{{}^{n}}C_1{I^{n-1}}Z+{{}^{n}}C_2{I^{n-2}}Z^{2}+…+{{}^{n}}C _{n}Z^{n} $

$ ={{}^{n}}C_0I+{{}^{n}}C_1Z+{{}^{n}}C_2Z+{{}^{n}}C_3Z+….+{{}^{n}}C _{n}Z $

$ =I+{{(}^{n}}C_1+{{}^{n}}C_2+{{}^{n}}C_3+…+{{}^{n}}C _{n})Z=I+(2^{n}-1)Z $