Determinants Matrices Question 154

Question: If $ A= \begin{bmatrix} \alpha & 0 \\ 1 & 1 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} 9 & a \\ b & c \\ \end{bmatrix} $ and $ A^{2}=B $ , then the value of a + b + c is

Options:

A) 1 or -1

B) 5 or -1

C) 5 or 1

D) no real values

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] We have $ A^{2}= \begin{bmatrix} \alpha & 0 \\ 1 & 1 \\ \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \\ \end{bmatrix} = \begin{bmatrix} {{\alpha }^{2}} & 0 \\ \alpha +1 & 1 \\ \end{bmatrix} = \begin{bmatrix} 9 & a \\ b & c \\ \end{bmatrix} $
    $ \Rightarrow $ we get $ {{\alpha }^{2}}=9\Rightarrow \alpha =\pm 3 $ and $ a=0,c=1,b=\alpha +1=3+1=4 $ or $ b=-3+1=-2 $

So $ a+b+c=(0+4+1)=5 $ or $ (0-2+1)=-1 $