Determinants Matrices Question 155

Question: If $ X= \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} $ , and I is a $ 2\times 2 $ identity matrix, then $ X^{2}-2X+3I $ equals to which one of the following-

Options:

A) -I

B) -2X

C) 2X

D) 4X

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Given matrix is: $ X= \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} $
    $ \therefore X^{2}= \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} $

$ = \begin{bmatrix} 1 & -2-6 \\ 0 & 9 \\ \end{bmatrix} = \begin{bmatrix} 1 & -8 \\ 0 & 9 \\ \end{bmatrix} $ So, the given expression is: $ X^{4}-2X+3I= \begin{bmatrix} 1 & -8 \\ 0 & 9 \\ \end{bmatrix} -2 \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} +3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} $

$ = \begin{bmatrix} 1 & -8 \\ 0 & 9 \\ \end{bmatrix} + \begin{bmatrix} -2 & +4 \\ 0 & -6 \\ \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \\ \end{bmatrix} $

$ = \begin{bmatrix} 1-2+3 & -8+4 \\ 0 & 9-6+3 \\ \end{bmatrix} $

$ = \begin{bmatrix} 2 & -4 \\ 0 & 6 \\ \end{bmatrix} =2 \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ \end{bmatrix} =2X $