Determinants Matrices Question 157

Question: If $ \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \\ \end{bmatrix} \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $ then find the value of x

Options:

A) $ \frac{1}{2} $

B) $ \frac{1}{5} $

C) No unique value of ‘x’

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] We have $ \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \\ \end{bmatrix} $

$ \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \\ \end{bmatrix} = \begin{bmatrix} 5x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 10x-2 & 5x \\ \end{bmatrix} = $

$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $
$ \Rightarrow x=1/5 $