Determinants Matrices Question 158

Question:If $\begin{bmatrix} 3 & 0 & 5 \\0 & 2 & 0 \\1 & -3 & 2 \end{bmatrix} \begin{bmatrix} -y & 15y & 8y \\0 & 2 & 0 \\ y & -5y & -3y \end{bmatrix} $=$\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix}$

then find the value of y

Options:

A) $\frac{1}{3}$

B) $\frac{1}{4}$

C) No unique value of ‘y’

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We have $\begin{bmatrix}3 & 0 & 5 \\0 & 2 & 0 \\1 & -3 & 2 \end{bmatrix}\begin{bmatrix}-y & 15y & 8y \\0 & 2 & 0 \\y & -5y & -3y \end{bmatrix}$

=$\begin{bmatrix}6y & 0 & 0 \\0 & 2 & 0 \\0 & 15y-3 & 8y \end{bmatrix}$

=$\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix}$

$\Rightarrow y=\frac{1}{3}$



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index