Determinants Matrices Question 162

Question: $ A= \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} 2 & 3 \\ -1 & -2 \\ \end{bmatrix} $ , then which of the following is/are correct- 1. $ AB({A^{-1}}{B^{-1}}) $ is a unit matrix. 2. $ {{(AB)}^{-1}}={A^{-1}}{B^{-1}} $ Select the correct answer using the code given below:

Options:

A) 1 only

B) 2 only

C) Both 1 only 2

D) Neither 1 nor 2

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Here, $ A= \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} 2 & 3 \\ -1 & -2 \\ \end{bmatrix} $

$ | A |=3-(-2)=5 $ and $ | B |=-4-(-3)=-1 $
$ \Rightarrow {A^{-1}}=\frac{1}{5} \begin{bmatrix} 3 & 1 \\ -2 & 1 \\ \end{bmatrix} $ and $ {B^{-1}}=-1 \begin{bmatrix} -2 & -3 \\ 1 & 2 \\ \end{bmatrix} $

$ AB= \begin{bmatrix} 3 & 5 \\ 1 & 0 \\ \end{bmatrix} $ and $ {A^{-1}}{B^{-1}}=\frac{1}{5} \begin{bmatrix} 5 & 7 \\ -5 & 8 \\ \end{bmatrix} $
$ \Rightarrow AB({A^{-1}}{B^{-1}})=\frac{1}{5} \begin{bmatrix} -10 & -12 \\ 5 & 7 \\ \end{bmatrix} \ne 1 $ . $ | AB |=0-5=-5 $
$ \therefore {{(AB)}^{-1}}=\frac{-1}{5} \begin{bmatrix} 0 & -5 \\ -1 & 3 \\ \end{bmatrix} \ne {A^{-1}}{B^{-1}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें