Determinants Matrices Question 165

Question: If $ {\Delta_1}= \begin{vmatrix} x & b & b \\ a & x & b \\ a & a & x \\ \end{vmatrix} $ and $ {\Delta_2}= \begin{vmatrix} x & b \\ a & x \\ \end{vmatrix} $ are the given determinants, then

Options:

A) $ {\Delta_1}=3{{({\Delta_2})}^{2}} $

B) $ \frac{d}{dx}({\Delta_1})=3({\Delta_2}) $

C) $ \frac{d}{dx}({\Delta_1})=3{{({\Delta_2})}^{2}} $

D) $ {\Delta_1}=3{\Delta_2}^{3/2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ {\Delta_1}=x(x^{2}-ab)-b(ax-ab)+b(a^{2}-ax) $

$ =x^{3}-3abx+ab^{2}+a^{2}b $

$ \frac{d}{dx}({\Delta_1})=3x^{2}-3ab=3(x^{2}-ab)=3{\Delta_2} $