Determinants Matrices Question 166

Question: Let A and B be two $ 2\times 2 $ matrices, Consider the statements

(i) $ AB=O\Rightarrow A=O $ or $ B=0 $
(ii) $ AB=I_2\Rightarrow A={B^{-1}} $
(iii) $ {{(A+B)}^{2}} $ = $ A^{2}+2AB+B^{2} $
Then

Options:

A) (i) and (ii) are false, (iii) is true

B) (ii) and (iii) are falsse, (i) is true

C) (i) is false, (ii) and (iii) are true

D) (i) and (iii) are false, (ii) is true

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] (i) is false. If $ A= \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ \end{bmatrix} $ , then $ AB= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} =0 $
    (ii) is true as the product AB is an identity matrix, if and only if B is inverse of the matrix A. (iii) is false since matrix multiplication in not commutative.