Determinants Matrices Question 17

Question: If $ [a] $ denotes the integral part of a and $ x=a_3y+a_2z, $

$ y=a_1z+a_3z $ and $ z=a_2x+a_1y, $ where x, y, z are not all zero. If $ a_1=m-[m], $ m being a non-integral constant, then $ a_1a_2a_3 $ is

Options:

A) $ >1 $

B) $ >-1 $

C) $ <1 $

D) $ <-1 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given, $ x=a_3y+a_2z $

… (i) $ y=a_1z+a_3x $

… (ii) $ z=a_2x+a_1y $

… (iii) Since, x, y, z are not all zero, therefore given system of equations has non-trivial solution.

$ \therefore \begin{vmatrix} 1 & -a_3 & -a_2 \\ a_3 & -1 & a_1 \\ a_2 & a_1 & -1 \\ \end{vmatrix}=0 $

$ \Rightarrow a_1^{2}+a_2^{2}+a_3^{2}+2a_1a_2a_3=1 $ ……. (iv) Since, $ a_1=m-[m] $ and m is not an integer.

$ \therefore 0<a_1<1\Rightarrow 1-a_1^{2}<1 $

… (v) From Eq. (iv), $ 1-a_2^{2}-a_3^{2}=a_1^{2}+2a_1a_2a_3 $

$ \Rightarrow 1-a_2^{2}-a_3^{2}+a_2^{2}a_3^{2}=a_1^{2}+2a_1a_2a_3+a_2^{2}a_3^{2} $

$ \Rightarrow (1-a_2^{2})(1-a_3^{2})={{(a_1+a_2a_3)}^{2}}. $

……..(vi) Similarly, $ (1-a_1^{2})(1-a_3^{2})={{(a_2+a_1a_3)}^{2}} $ …(vii) $ (1-a_1^{2})(1-a_2^{2})={{(a_3+a_1a_2)}^{2}} $

…(viii) From Eq. (viii), $ 1-a_2^{2}\Rightarrow 0.\frac{{{(a_3+a_1a_2)}^{2}}}{1-a_1^{2}} $
From Eq. (viii), $ 1-a_3^{2}>0\Rightarrow 3-(a_1^{2}+a_2^{2}+a_3^{2})>0 $

$ \Rightarrow a_1^{2}+a_2^{2}+a_3^{2}<3\Rightarrow 1-2a_1a_2a_3<3 $
[From Eq. (iv)]

$ \Rightarrow a_1a_2a_3>-1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें