Determinants Matrices Question 176

Question: Consider the system of linear equations $ a_1x+b_1y+c_1z+d_1=0, $

$ a_2x+b_2y+c_2z+d_2=0, $

$ a_3x+b_3y+c_3z+d_3=0, $ Let us denote by $ \Delta (a,b,c) $ the determinant $ \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ \end{vmatrix} $ , if $ \Delta (a,b,c)#0, $ then the value of x in the unique solution of the above equations is

Options:

A) $ \frac{\Delta (b,c,d)}{\Delta (a,b,c)} $

B) $ \frac{-\Delta (b,c,d)}{\Delta (a,b,c)} $

C) $ \frac{\Delta (a,c,d)}{\Delta (a,b,c)} $

D) $ -\frac{\Delta (a,b,d)}{\Delta (a,b,c)} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] From the given system of equations, $ x=\frac{D_1}{D}, $

$ y=\frac{D_2}{D}, $

$ z=\frac{D_3}{D} $ where, $ D=\Delta (a,b,c); $

$ D_1=\Delta (d,b,c) $

$ D_2=\Delta (a,d,c); $

$ D_1=\Delta (a,b,d) $ Now, $ x=\frac{\Delta (d,b,c)}{\Delta (a,b,c)} $ where, $ \Delta (d,b,c)= \begin{vmatrix} -d_1 & b_1 & c_1 \\ -d_2 & b_2 & c_2 \\ -d_3 & b_3 & c_3 \\ \end{vmatrix} $

$ =- \begin{vmatrix} b_1 & -d_1 & c_1 \\ b_2 & -d_2 & c_2 \\ b_3 & -d_3 & c_3 \\ \end{vmatrix}=+ \begin{vmatrix} b_1 & c_1 & -d_1 \\ b_2 & c_2 & -d_2 \\ b_3 & c_3 & -d_3 \\ \end{vmatrix} $

$ =\Delta (b,c,d) $ Hence, $ x=\frac{\Delta (b,c,d)}{\Delta (a,b,c)} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें