Determinants Matrices Question 177

Question: For what value of p, is the system of equations : $ p^{3}x+{{(p+1)}^{3}}y={{(p+2)}^{3}} $

$ px+(p+1)y=p+2 $

$ x+y=1 $ consistent-

Options:

A) $ p=0 $

B) $ p=1 $

C) $ p=-1 $

D) For all $ p>1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] The given system of equations are: $ p^{3}x+{{(p+1)}^{3}}y={{(p+2)}^{3}} $

…. (1) $ px+(p+1)y=(p+2) $

…. (2) $ x+y=1 $

…. (3) This system is consistent, if values of x and y from first two equation satisfy the third equation. which
$ \Rightarrow \begin{vmatrix} p^{3} & {{(p+1)}^{3}} & {{(p+2)}^{3}} \\ p & (p+1) & (p+2) \\ 1 & 1 & 1 \\ \end{vmatrix}=0 $
$ \Rightarrow \begin{vmatrix} p^{3} & {{(p+1)}^{3}}-p^{3} & {{(p+2)}^{3}}-p^{3} \\ p & 1 & 2 \\ 1 & 0 & 0 \\ \end{vmatrix}=0 $
$ \Rightarrow 2{{(p+1)}^{3}}-2p^{3}-{{(p+2)}^{3}}+p^{3}=0 $
$ \Rightarrow 2(p^{3}+1+3p^{2}+3p)-2p^{3}-(p^{3}+8+12p+6p^{2})+p^{3}=0 $
$ \Rightarrow 2p^{3}+2+6p^{2}+6p-2p^{3}-p^{3}-8-12p $

$ -6p^{2}+p^{3}=0 $
$ \Rightarrow -6-6p=0\Rightarrow p=-1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें