Determinants Matrices Question 178

Question: If $ C=2cos\theta , $ then the value of the determinant $ \Delta = \begin{bmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \\ \end{bmatrix} $ is

Options:

A) $ \frac{2{{\sin }^{2}}2\theta }{\sin \theta } $

B) $ 8{{\cos }^{3}}\theta -4\cos \theta +6 $

C) $ \frac{2\sin 2\theta }{\sin \theta } $

D) $ 8{{\cos }^{3}}\theta +4\cos \theta +6 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given that, $ \Delta = \begin{bmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \\ \end{bmatrix} =C(C^{2}-1)-1(C-6) $
    $ \Rightarrow \Delta =2\cos \theta (4{{\cos }^{2}}\theta -1)-(2\cos \theta -6) $

$ (\because C=2\cos \theta given) $

$ =8{{\cos }^{3}}\theta -4\cos \theta +6 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index