Determinants Matrices Question 18

Question: If [ ] denotes the greatest integer less than or equal to the real number under consideration and $ -1\le x<0; $ $ 0\le y<1; $ $ 1\le z<2, $ then the value of the determinant $ \begin{vmatrix} [x]+1 & [y] & [z] \\ [x] & [y]+1 & [z] \\ [x] & [y] & [z]+1 \\ \end{vmatrix} $ is

Options:

A) $ [z] $

B) $ [y] $

C) [x]

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Since, $ -1<x<0 $

$ \therefore [x]=-1 $

$ 0<y<1\therefore [y]=0, $

$ 1<z<2\therefore [z]=1 $
$ \therefore $ Given determinant $ = \begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \\ \end{vmatrix}=1=[z] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें