Determinants Matrices Question 19

Question: Let A be an nth-order square matrix and B be its adjoint, then $ | AB+KI _{n} | $ is (where K is a scalar quantity)

Options:

A) $ {{(| A |+K)}^{n-2}} $

B) $ {{(| A |+K)}^{n}} $

C) $ {{(| A |+K)}^{n-1}} $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] We have, AB = A(adj A) $ =| A |I _{n} $
    $ \therefore AB+KI _{n}=| A |I _{n}+KI _{n}=(| A |+k)I _{n} $
    $ \Rightarrow | AB+KI _{n} |=| (| A |+K)I _{n} | $

(
$ \therefore | \alpha I _{n} |={{\alpha }^{n}} $ ) $ ={{(| A |+K)}^{n}} $