Determinants Matrices Question 21

Question: The determinant $ \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \\ \end{vmatrix} $ is independent of

Options:

A) x only

B) $ \theta $ only

C) x and $ \theta $ both

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \\ \end{vmatrix} $

$ =x(x^{2}-1)-\sin \theta (-x\sin \theta -\cos \theta ) $

$ +\cos \theta (-\sin \theta +x\cos \theta ) $

$ =-x^{3}-x+x{{\sin }^{2}}\theta +\sin \theta \cos \theta $

$ -\cos \theta \sin \theta +x{{\cos }^{2}}\theta ) $

$ =x^{3}-x+x=x^{3} $