Determinants Matrices Question 26
Question: If $ f(x)= \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^{2} & 2x \\ \tan x & x & 1 \\ \end{vmatrix}, $ then $ \underset{x\to 0}{\mathop{\lim }}[ \frac{f’(x)}{x} ] $ is
Options:
A) $ 2 $
B) $ -2 $
C) $ 1 $
D) $ -1 $
Show Answer
Answer:
Correct Answer: B
Solution:
- [b] We have,   $ f(x)= \begin{vmatrix}    \cos  & x & 1  \\    2\sin x & x^{2} & 2x  \\    \tan x & x & 1  \\ \end{vmatrix}= \begin{vmatrix}    \cos x-\tan x & 0 & 0  \\    2\sin x & x^{2} & 2x  \\    \tan x & x & 1  \\ \end{vmatrix} $   [Applying   $ R_1\to R_1-R_3 $   ]   $ =(\cos x-\tan x)(x^{2}-2x^{2}) $    [Expanding along   $ R_1 $   ]   $ =-x^{2}(\cos x-\tan x) $   
 $ \therefore f’(x)=-2x(\cos x-\tan x)-x^{2}(-sinx-{{\sec }^{2}}x) $
 $ \therefore \underset{x\to 0}{\mathop{\lim }}[ \frac{f’(x)}{x} ]=\underset{x\to 0}{\mathop{\lim }}-2(\cos x-\tan x) $
$ +x(\sin x+{{\sec }^{2}}x) $
$ =-2\times 1=-2 $
 BETA
  BETA 
             
             
           
           
           
          