Determinants Matrices Question 32

Question: If $ f(x)=a+bx+cx^{2} $ and $ \alpha ,\beta ,\lambda $ are roots of the equation $ x^{3}=1, $ then $ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} $ is equal to

Options:

A) $ f(\alpha )+f(\beta )+f(\lambda ) $

B) $ f(\alpha )f(\beta )+f(\beta )f(\lambda )+f(\gamma )+f(\alpha ) $

C) $ f(\alpha )f(\beta )f(\gamma ) $

D) $ -f(\alpha )f(\beta )f(\gamma ) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix}=-(a^{3}+b^{3}+c^{3}-3abc) $

$ =-(a+b+c)(a+b{{\omega }^{2}}+c\omega )(a+b\omega +c{{\omega }^{2}}) $

$ =-f(\alpha )f(\beta )f(\lambda )[\because \alpha =1,\beta =\omega ,={{\omega }^{2}}] $