Determinants Matrices Question 34

Question: If A is a square matrix of order n, then adj (adj A) is equal to

Options:

A) $ |A{{|}^{n-1}}A $

B) $ |A{{|}^{n}}A $

C) $ |A{{|}^{n-2}}A $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] For any square matrix X, we have $ X(adjX)=| X |I _{n} $ Taking X = adj A, we get $ (adjA)[adj(adjA)]=| adjA |I _{n} $
    $ \Rightarrow (adjA)[adj(adjA)]={{| A |}^{n-1}}I _{n} $

$ [\because | adjA |={{| A |}^{n-1}}] $
$ \Rightarrow (AadjA)[adj(adjA)]={{| A |}^{n-1}}A $

$ [\because AI _{n}=A] $

$ (| A |I _{n})(adj(adjA))={{| A |}^{n-1}}A $
$ \Rightarrow adj(adjA)={{| A |}^{n-2}}A $