Determinants Matrices Question 35

Question: If A and B are square matrices of the same order and A is nonsingular, then for a positive integer n, $ {{({A^{-1}}BA)}^{n}} $ is equal

Options:

A) $ {A^{-n}}B^{n}A^{n} $

B) $ A^{n}B^{n}{A^{-n}} $

C) $ {A^{-1}}B^{n}A $

D) $ n({A^{-1}}BA) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ {{({A^{-1}}BA)}^{2}}=({A^{-1}}BA)({A^{-1}}BA) $

$ ={A^{-1}}B(A{A^{-1}})BA $

$ ={A^{-1}}BIBA={A^{-1}}B^{2}A $
$ \Rightarrow {{({A^{-1}}BA)}^{3}}=({A^{-1}}B^{2}A)({A^{-1}}BA) $

$ ={A^{-1}}B^{2}(A{A^{-1}})BA $

$ ={A^{-1}}B^{2}IBA $

$ ={A^{-1}}B^{3}A $ and so on
$ \Rightarrow {{({A^{-1}}BA)}^{n}}={A^{-1}}B^{n}A $