Determinants Matrices Question 38

Question: If a, b, and c are nonzero real number then $ \Delta = \begin{vmatrix} b^{2}c^{2} & bc & b+c \\ c^{2}a^{2} & ca & c+a \\ a^{2}b^{2} & ab & a+b \\ \end{vmatrix} $ is equal to

Options:

A) abc

B) $ a^{2}b^{2}c^{2} $

C) bc+ca+ab

D) none of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Applying $ R_1\to aR_1,R_2\to bR_2 $ and $ R_3\to cR_3 $ , we get = Applying $ C_3\to C_3+C_1 $ and taking $ (bc+ca+ab) $ common, we get [
    $ \therefore $ $ C_2 $ and $ C_3 $ are identical]