Determinants Matrices Question 38
Question: If a, b, and c are nonzero real number then $ \Delta = \begin{vmatrix} b^{2}c^{2} & bc & b+c \\ c^{2}a^{2} & ca & c+a \\ a^{2}b^{2} & ab & a+b \\ \end{vmatrix} $ is equal to
Options:
A) abc
B) $ a^{2}b^{2}c^{2} $
C) bc+ca+ab
D) none of these
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] Applying $ R_1\to aR_1,R_2\to bR_2 $ and $ R_3\to cR_3 $ , we get = Applying $ C_3\to C_3+C_1 $ and taking $ (bc+ca+ab) $ common, we get [
$ \therefore $ $ C_2 $ and $ C_3 $ are identical]