Determinants Matrices Question 39

Question: If $ a\ne b\ne c $ are all positive, then the value of the determinant $ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} $ is

Options:

A) Non-negative

B) Non-positive

C) Negative

D) Positive

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix}= \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \\ \end{vmatrix} $

$ (\because C_1\to C_1+C_2+C_3) $

$ =(a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \\ \end{vmatrix} $ [on taking (a+b+c) common from $ C_1 $ ] $ =(a+b+c)[1(bc-a^{2})-b(b-a)+c(a-c)] $

$ =(a+b+c)[bc-a^{2}-b^{2}+ab+ac-c^{2}] $

$ =(a+b+c)[-(a^{2}+b^{2}+c^{2}-ab-bc-ca)] $

$ =-\frac{1}{2}(a+b+c)[{{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}] $ Hence, the determinant is negative value



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें